
Post-pandemic Life: Vigilance Against Future Risks

King Cheung Berry, CHEUNG (MBA)
Head of System Delivery
Emerging Viral Diagnostics (HK) Limited

Property of Emerging Viral Diagnostics (HK) Limited. Private and Confidential

Post-Pandemic

- Social Norm back to normal
- Mask-enforcement lifted
- Direct contact increases
- Increased cross-border travel

Global Health Issues. What's next?

- Antimicrobial resistance (AMR)
- Weakened Immune System
- Mutation
- Adenovirus, Flu A
- Hot off the press: Mini outbreak of Child Pneumonia cases in northern China

情况十分罕有。除非有自身免疫缺陷問題才會出現

日)該署人員巡查元朗流浮山一持牌豬場,從62頭豬隻中抽取樣本作 發現其中至小5頭發傷的樣木對被輸出非洲發痕指橐,該要

Pandemic is not really over

The Government of the Hong Kong Special Administrative Region Press Releases DH appeals for heightened vigilance against respirat > DH appeals for heightened vigilance against respiratory tract infection The Centre for Health Protection (CHP) of the Department of Health today (October 20) urged members of the public to heighten their vigilance against respiratory tract infection, including COVID-19. seasonal influenza and Mycoplasma pneumoniae infection, and stressed that vaccination can effectively prevent serious COVID-19 and influenza cases. The CHP also reminded persons who are symptomatic, even if having mild symptoms, to wear a surgical mask and seek medical advice promptly with a view to

lowering the risk of high-risk persons being infected. Strict personal, hand and environmental hygiene The CHP has been closely monitoring the local situation of influenza and COVID-19. The overall local seasonal influenza activity has decreased recently, but remained above the epidemic seasonal threshold and may increase in the winter season

WHO statement on reported clusters of respiratory illness in children in northern China

WHO has made an official request to China for detailed information on an increase in respiratory illnesses and reported clusters of pneumonia in children.

At a press conference on 13 November 2023. Chinese authorities from the National Health Commission reported an increase in incidence of respiratory diseases in China. Chinese authorities attributed this increase to the lifting of COVID-19 restrictions and the circulation of known pathogens such as influenza, mycoplasma pneumoniae (a common bacterial infection which typically affects younger children), respiratory syncytial virus (RSV), and SARS-CoV-2 (the virus that causes COVID-19). Authorities stressed the need for enhanced disease surveillance n healthcare facilities and community settings, as well as strengthening the capacity of the health system to manage patients.

@ 75 m

should also be observed at all times

Medical Alone Is Not Enough

Importance of non-clinical application

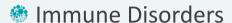
Prevention + Detection

Cross-species transmission – poultry farming + Environmental (e.g. swine)

主,另有鼻病毒、肺炎支原體、呼吸遺合胎病毒、腺病毒等,分析認為近期急性呼吸遺疾病

vahoo! 新聞

A- A' & = =


【明報專訊】全球經歷新冠一役後復常,港大微生物學系講座教授袁國勇 日在本報撰文,指新冠病毒並非最後一場大流行,新發傳染病必陸續有來,寄語反思如何預備 未來大流行。文章提到應增加監測有症狀疾病患者及患病動物的微生物和疾病,在病毒大規模

Reference: Mingpao.com.防下次疫情 衰國勇促續監察篩查 各地聯手尋「潛力病源」 街市入境等高危地點把關. https://shorturl.at/beuD6. Accessed on 24 Nov 2023

Importance of Target Identification

Children

Co-infection

Relieve anxiety

COVID NOT the major pathogens, shifting time to time

The Decentralisation Trend

- Data Sharing
- Decentralisation
- Shift from pandemic to endemic

CENTRALISATION AND DECENTRALISATION IN A CRISIS:

HOW CREDIT AND BLAME SHAPE GOVERNANCE

By Scott L. Greer, Michelle Falkenbach, Holly Jarman, Olga Löblová, Sarah Rozenblum, Noah Williams and Matthias Wismar

https://iris.who.int/bitstream/handle/10665/344946/Eurohealth-27-1-36-40-eng.pdf?sequence=1

COVID-1

COVID-19 will likely shift from pandemic to endemic — but what does that mean?

https://www.weforum.org/agenda/2021/09/covid-pandemic-epidemic-disease-coronavirus/

Empowering clinical research in a decentralized world

Walter De Brouwer, Chiraq J. Patel, Arjun K. Manrai, Isaac R. Rodriquez-Chavez & Niray R. Shah ™

noi Digital Medicine 4, Article number: 102 (2021) | Cite this article

10k Accesses | 20 Citations | 41 Altmetric | Metrics

The COVID-19 pandemic has been a catalyst for the implementation of decentralized clinical trials (DCTs) enabled by digital health technologies (DHTs) in the field while curtailing in-person interactions and putting significant demands on health care resources. DHTs offer improvements in real-time data acquisition remotely while maintaining privacy and security. Here, we describe the implications of technologies, including edge computing, zero-trust environments, and federated computing in DCTs enabled by DHTs. Taken together, these technologies—in the setting of policy and regulation that enable their use while protecting the users—extend the scope and accelerate the pace of clinical research.

https://www.nature.com/articles/s41746-021-00473-w

Post COVID-19 condition: WHO supports standardization of clinical data collection and reporting

12 August 2021 | Departmental news | Reading time: Less than a minute (97 words)

The World Health Organization is working with researchers to address the urgent need to streamline data collection and reporting on Post COVID-19 condition, also known as flong COVID'.

A significant portion of people diagnosed with COVID-19 experience lingering symptoms including fatigue, breathlessness and neurological complications. The project, Post_COVID Condition Core Outcomes, will survey these patients to establish what core patient outcomes need to be measured to understand the condition. Later; the project will Focus on how to measure these outcomes.

See the full announcement: Researchers start new investigation into Long | EurekAlert!

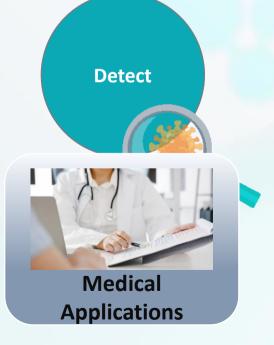
About the project: https://www.pc-cos.org/

https://www.who.int/news/item/12-08-2021-post-covid-19-condition-who-supports-standardization-of-clinical-data-collection-and-reporting

國家衛生健康委斯閱發高人米維表示。當局持續開展呼吸道疾病監測和形勢研判,推進流威 疫苗接種,定期期價各地醫會資源供給初診療工作情況,有針對性地加強工作指導,組織經 驗交流投資培訓。會上經顧民眾堅持戴口罩。多通風、勤洗手的衛生習慣,倡導「一老一 小」等畢點人群積極接種相關疫苗、並建議病量首遇到基層醫療衛生機構或综合醫院兒科就 始。

https://hk.news.yahoo.com/%E5%85%A7%E5%9C%B 0%E6%B5%81%E6%84%9F%E7%96%AB%E6%83%85% E5%8D%87%E6%BA%AB-

%E5%91%BC%E5%90%B8%E9%81%93%E7%97%85%E 5%8E%9F%E9%AB%94%E7%96%84%E5%8A%A0%E5 %80%8B%E6%A1%88%E6%80%A5%E5%A2%9E-071013012.html


Vigilance Looks Like... (A Simplistic View)

Database Deadlock

Cyber Security

Avalon Automated Multiplex System AAMST

Customizable reagent cartridge for simultaneous detection of Viruses, Bacteria & Fungi

Mycobacterium tuberculosis	Influenza A (Matrix)	Parainfluenza 1	Adenovirus	Cryptococcus neoformans/gattii
Mycoplasma pneumoniae	Influenza A (pdm09 H1)	Parainfluenza 2	Bocavirus	Pneumocystis jirovecii
Legionella pneumophila	Influenza A (H2)	Parainfluenza 3	Human Metapneumovirus	
Bordetella pertussis	Influenza A (H3)	Parainfluenza 4	Respiratory syncytial virus	
Chlamydophila psittaci	Influenza A (H5)	Coronavirus 229E	Human Enterovirus/ Rhinovirus	
Burkholderia pseudomallei	Influenza A (H6)	Coronavirus NL63	Parechovirus	
Coxiella burnetii	Influenza A (H7)	Coronavirus HKU1		Marie
Chlamydophila pneumoniae	Influenza A (H9)	Coronavirus OC43		
Staphylococcus aureus	Influenza A (H10)	MERS-CoV		40
Streptococcus pneumoniae	Influenza B	SARS-CoV-2		
Streptococcus pyogenes	Influenza C			200

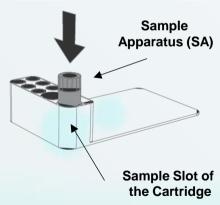
All-in-One Diagnostic System

Diagnostics

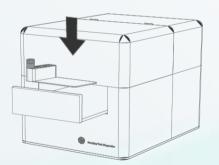
Input Sample

Input Sample into Sample
Apparatus (SA) & plug in to the Sample Slot of the Cartridge

Insert Cartridge


Insert the the Cartridge to the Diagnostic Device

Press Start


Press "Start" to kickstart the operation

Result

Report generation (on screen and in printable versions)

Microfluidic Cartridge

All-in-One POC (Point-Of-Care)
Diagnostic Device

Control PC & Software

Test Run Det								
		Respiratory Panel		Semple ID	120	13099224		
Date	11	Fe9-2020		Time	133	30:35 AM		
			Sain	may				
Coottest	Europe							
Detected	Virginit	Vicinetilis A Flu A Mil						
Questionable	Mod Tours	Not found.						
				ration (Defails)				
Type		Pathoger(c)		her		Pathogendo	- 10	
101.00		Mineral 2	. 122	Vivoes .		Nilsenso & HE		
			Negativ	e (Details)				
Type		Pathopm01		Type		Pythogenicii		
Vir.eet		Enfluenza A HG-200		Vinget.		nCov-2018		
Veset.				YOUR		MOS CODMITTE		
V0.463 84			offuerds A1D			SARD-Constraints		
			Influence A HD			Contravinus 2295		
			Hueras A1C		Virsies		Ceronerma NGSS	
		Influence AHS		Vinotes		Geronevinus 0048		
		Historia AHUE		federa		Mycelettrum tuberories		
		offuerdo 8			Earteria .		Alphaplaces preumoniae	
Ve.ces of series C				Batteria		Segmento presursantes		
V9.685			R WYG	Balteria		Avaints person		
Visitet		Ruman Metapoeumouro		Selen		(Namy dophia politica)		
Veget	Human Paramfluenza)			Sederis		Chiampitohili preutoniae		
V9.46		Summer Parsenthomas 2		Purgs		Chatesocia regionera gut		
Water	Station Parenthonal			Political		Promising province		
Vinani	Turner Personferance		e 4	Barberia		Self-tridera papulemalet		
		Amar Shrowing		Sederia		Contribe Instruction		
Veign.	Ruman Farechoving		4.	Barteria		Shaphylannous aumus		
Vir.ess				Barberta		Profession presented		
vese		Numer Sciences		born.		(PERSONAL I	regeres	
V4.641		THE NEW YORK				_		
			Direttion	Me (De(als)				
Nor		Pathoperity Per		is Type		Chagerial	Brisin	
			1	17.7	- 17		-	
		- 29	Control	lest Results				
CW1	Passed Clett			Fenel				
CHCE	Pused	C994		Firsel				
			Operation	res Details		11//		
Operator ID 12545		13345		Operator Name		TK		
Cartridge Serval Number		1309ac941412806		Cartridge Lot Peursber		1246770008800-1248507		
Mattine Serial Number		alchdescycorum		Machine Firmmere Version		112300		
Software Service VI.1.1			Paget Version			V2338		

Report Issuance

IEEE Publication

Diagnostics

Received 10 June 2022; revised 16 November 2022; accepted 16 December 2022. Date of publication 19 December 2022: date of current version 6 July 2025.

Automated System for Multiplexing Detection of COVID-19 and Other Respiratory Pathogens

PARKER Y. L. TSANG 31.2, SUNNY L.H. CHU1.2, LIBBY C. W. LIGH, DEBORAH M. S. TAI1, BERRY K. C. CHEUNG¹, FIRAOL TAMIRU KEBEDE², PETE Y. M. LEUNG², WINSTON WONG¹. TERESA CHUNG²², CYRIL C. Y. YIP²³, ROSANA W. S. POON³, JONATHAN H. K. CHEN²³, KWOK-YUNG YUEN3,4, MANSON FOK1,5, JOHNSON Y. N. LAU1,6,

AND LOK-TING LAU 1,2,7

Emerging Vind Diagnostics (HK: Ltd., Hong Kong ¹Department of Industrial and Softens-Engineering, The Hong Kong Polyscobne University, Blong Kong
¹Department of Municipalitys, The Conversity of Bong Kong, Hong Kong, *Course for Vischings, Viscouchings and Therapeutics, Bong Kong Science and Technology Fack, thong Kong *Faculty of Medicine, Museu University of Krimor and Technology, Marco. Denument of Bultury, Blaze Kong Raetic University, Hone Kong School of Chinese Medicine, Hong Kong Raptire University, Hong Kong CORRESPONDING AUTHOR: LOK-TING LAU (herencelau@hAbu.edu.hk)

This work was supported in part by the Innovation and Technology Fund (TTF) of the Hong Kong, Special Administrative Region of China (HKSAR): Covernment, in part by the Public Sector Stall Scheme (PSTS) under Gaset SST/01 (29CP, in part by the Midstream Research Programme for Universities (MRP) under Gaset MRP/040/20x, and in part by Health (Store HK This work involved human subjects or animals in its ownersh. Accrossl of all ethical and experimental procedures and protocols was granted by The Hung Kong Polytechnic University, Human Subjects Bihics Sub-committee, under Protocol No. HSEARS20200800001 on 26 August 2020, and HSU HA HSW RB under Protocol No. UW 30-224 on 20 March 2020.

This article has supplementary downloadable material available at https://doi.org/10.1109/ITEHM.2022.3250716. provided by the authors.

ABSTRACT Objective: Infectious diseases are global health challenge, impacted the communities worldwide particularly in the midst of COVID-19 pandemic. The need of rapid and accurate automated systems for detecting pathogens of concern has always been critical. Ideally, such systems shall detect a large panel of nathogens simultaneously regardless of well-equipped facilities and highly trained operators. thus realizing on-site diagnosis for frontline healthcare providers and in critical locations such as borders and airports. Methods & Results: Avalon Automated Multiplex System, AAMST, is developed to automate a series of biochemistry protocols to detect nucleic acid sequences from multiple pathogens in one test. Automated processes include isolation of nucleic acids from unprocessed samples, reverse transcription and two rounds of amplifications. All procedures are carried out in a microfluidic cartridge performed by a desktop analyzer. The system was validated with reference controls and showed good agreement with their laboratory counterparts. In total 63 clinical samples, 13 positives including those from COVID-19 patients and 50 negative cases were detected, consistent with clinical diagnosis using conventional laboratory methods. Conclusions: The proposed system has demonstrated promising utility. It would benefit the screening and diagnosis of COVID-19 and other infectious diseases in a simple, rapid and accurate fashion.

INDEX TERMS Automation, biochemistry, COVID-19, clinical diagnosis, genomics, microfluidics, polymerase chain reaction (PCR).

Clinical and Translational Impact Statement- A rapid and multiplex diagnostic system proposed in this work can clinically help to control spread of COVID-19 and other infectious agents as it can provide timely diagnosis, isolation and treatment to patients. Using the system at remoted clinical sites can facilitate early clinical munagement and surveillance.

Infectious diseases pose threats to human health and global stability [1], as witnessed by the ongoing Coronavirus

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has spread over all the continents within a few months, leading to millions of deaths, public health crisis Disease 2019 (COVID-19) pandemics [2] caused by severe and economic plunges in various countries [3]. A rapid and

Minister 11 Sept.

This work is bismood under a Counties Commons Stribution Stock amounted Nationalism & Claims

Detection results from clinical samples including those infected by SARS-CoV-2 and several other important respiratory pathogens have also fully agreed with gold standard testing methods.

The current feasibility study demonstrated the clinical usefulness of AAMST and it can potentially be deployed in many applications that require multiplexed nucleic acid detection in both research and clinical settings.

Parker Y.L.Tsang et al. Automated system for multiplexing detection of COVID 19 and other respiratory pathogens.

Safe to use in laboratory; safety standard

Accreditations

 ISO 13485:2016 certified for Device and Cartridge production (Medical Devices -Quality Management Systems)

A software guy in a stormy time

Lead the design & development of AAMST software

- Software Design
 - Panel Centric
 - Fast adaptation
- Clinical Laboratory Workflow Oriented
 - No-Nonsense approach
 - Minimising Human Guess Works
- Data Structure
 - Collection
 - Management

Surveillance

	Traditional	New Norm Enabler		
Data Collection	Centralised	Decentralised		
Information Generation	Centralised	Centralised		
Target throughput	Low	High		
Rounds of Single Target Test for Identification	Potentially Multiple	Single		
Time	Time consuming	Rapid Identification		

Key Takeaways

- Vigilance
- Teamwork
- Supports
- Thanks
- Design group
- Collaboration on new ideas

